Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo.

نویسندگان

  • Kenji Yoshida
  • Wataru Nishida
  • Ken'ichiro Hayashi
  • Yasuyuki Ohkawa
  • Akira Ogawa
  • Junken Aoki
  • Hiroyuki Arai
  • Kenji Sobue
چکیده

BACKGROUND We previously identified unsaturated (16:1, 18:1, and 18:2) but not saturated (12:0, 14:0, 16:0, and 18:0) lysophosphatidic acids (LPAs) as potent factors for vascular smooth muscle cell (VSMC) dedifferentiation. Unsaturated LPAs strongly induce VSMC dedifferentiation via the coordinated activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK), resulting in the proliferation and migration of dedifferentiated VSMCs. Here, we investigated the effects of 18:1 and 18:0 LPAs (as representative unsaturated and saturated LPAs, respectively) on the vasculature in vivo. METHODS AND RESULTS Rat common carotid arteries (CCAs) were treated transiently with 18:1 or 18:0 LPA and then examined by histological and biochemical analyses. The 18:1 but not 18:0 LPA potently induced vascular remodeling that was composed primarily of neointima. The incorporation of [3H]18:1 LPA into the CCAs revealed that a sufficient amount of unmetabolized [3H]18:1 LPA to induce VSMC dedifferentiation was present in the vascular wall. The 18:1 LPA-induced neointimal formation in vivo was also dependent on the coordinated activation of ERK and p38MAPK. Unlike balloon-injured CCAs, the 18:1 LPA-treated CCAs showed a histological similarity to human atherosclerotic arteries. CONCLUSIONS This is the first report demonstrating a role for a naturally occurring unsaturated LPA in inducing vascular remodeling in vivo and provides a novel animal model for neointimal formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Lysophosphatidic Acid Induces Neointima Formation Through PPARγ Activation

Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor-like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progr...

متن کامل

Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling.

OBJECTIVE Lysophosphatidic acid (LPA) is a bioactive lipid molecule produced by the plasma lysophospholipase D enzyme autotaxin that is present at ≥100 nmol/L in plasma. Local administration of LPA promotes systemic arterial remodeling in rodents. To determine whether LPA contributes to remodeling of the pulmonary vasculature, we examined responses in mice with alterations in LPA signaling and ...

متن کامل

Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids.

The phenotypic modulation of vascular smooth muscle cells (VSMCs) from the differentiated state to the dedifferentiated one is critically involved in the development and progression of atherosclerosis. Although many cytokines and growth factors have been reported as atherogenic factors, the critical pathogens for inducing atherosclerosis remain unknown, largely because proper examining systems ...

متن کامل

Plasticity-related gene-1 inhibits lysophosphatidic acid-induced vascular smooth muscle cell migration and proliferation and prevents neointima formation.

Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 108 14  شماره 

صفحات  -

تاریخ انتشار 2003